Dynamic Obstacle Avoidance Strategies using Limit Cycle for the Navigation of Multi-Robot System
نویسندگان
چکیده
This paper deals with the navigation of a multirobot system (MRS). The latter must reach and maintain a specific formation in dynamic environment. In such areas, the collision avoidance between the robots themselves and with other obstacles (static and dynamic) is a challenging issue. To deal with it, a reactive and a distributed control architecture is proposed. The navigation in formation of the MRS is insured while tracking a global virtual structure. In addition, according to the robots’ perception context (e.g., static or dynamic obstacle), the most suitable obstacle avoidance strategy is activated. These approaches use mainly the limitcycle principle and a penalty function to obtain linear and angular robots’ velocities. The proposed control law guarantees the stability (using Lyapunov function) and the safety of the MRS. The robustness and the efficiency of the proposed control architecture is demonstrated through a multitude of experiments which shows the MRS in different configuration of avoidance.
منابع مشابه
A Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملPii: S0921-8890(02)00311-1
10 A mobile robot should be designed to navigate with collision avoidance capability in the real world, flexibly coping with the changing environment. In this paper, a novel limit-cycle navigation method is proposed for a fast mobile robot using the limit-cycle characteristics of a 2nd-order nonlinear function. It can be applied to the robot operating in a dynamically changing environment, such...
متن کاملRaphael Grech “ Navigation and Obstacle Avoidance of Autonomous Mobile Robots in an Unstructured Environment
In this study various trajectory tracking and posture stabilization controllers for differentially driven wheeled mobile robots are studied, simulated and their effectiveness compared. Also, various Path Planning and obstacle avoidance techniques are evaluated. In robotics research, trajectory tracking and obstacle avoidance are typically considered as separate problems. The main contribution o...
متن کاملA real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer
A mobile robot should be designed to navigate with collision avoidance capability in the real world, flexibly coping with the changing environment. In this paper, a novel limit-cycle navigation method is proposed for a fast mobile robot using the limit-cycle characteristics of a 2nd-order nonlinear function. It can be applied to the robot operating in a dynamically changing environment, such as...
متن کامل